Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification
نویسندگان
چکیده
منابع مشابه
Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification
The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force gen...
متن کاملCochlear amplification, outer hair cells and prestin.
Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, ...
متن کاملFast cochlear amplification with slow outer hair cells.
In mammalian cochleas, outer hair cells (OHCs) produce mechanical amplification over the entire audio-frequency range (up to 100 kHz). Under the 'somatic electro-motility' theory, mechano-electrical transduction modulates the OHC transmembrane potential, driving an OHC mechanical response which generates cycle-by-cycle mechanical amplification. Yet, though the OHC motor responds up to at least ...
متن کاملAll Three Rows of Outer Hair Cells Are Required for Cochlear Amplification
In the mammalian auditory system, the three rows of outer hair cells (OHCs) located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposur...
متن کاملCochlear outer hair cell motility.
Normal hearing depends on sound amplification within the mammalian cochlea. The amplification, without which the auditory system is effectively deaf, can be traced to the correct functioning of a group of motile sensory hair cells, the outer hair cells of the cochlea. Acting like motor cells, outer hair cells produce forces that are driven by graded changes in membrane potential. The forces dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0050572